Mini-Chrom Monochromators & Accessories



All Mini-Chroms are optically identical Fastie-Ebert in-line monochromators with an effective aperture of f/3.9 and 74 mm focal length.

Optical Diagram of Mini-chrom monochromator

As shown in the optical diagram, input spectral radiation is focused at the entrance slit and reflected by a folding mirror onto a spherical collimating/focusing mirror. This mirror collimates the radiation and directs it onto the grating, where it is diffracted. Once separated into a spectrum, the radiation is directed back to the collimating/focusing mirror, after which a segment of the dispersed radiation is focused and then directed at the exit slit via a second folding mirror. The wavelength of monochromatic radiation exiting the instrument is dependent upon the angular position of the grating. A sine drive mechanism is used to rotate the grating, either manually or via a stepping motor, so that discrete wavelengths are sequentially focused at the exit slit in a linear fashion.

Beam Geometry and Alignment

To ensure maximum wavelength accuracy and system throughput, the effective aperture of the input beam should be f/3.9 or greater. If the input radiation has a faster (less than f/3.9) effective aperture, the input folding mirror will be overfilled and stray light will increase significantly. In addition, the converging (input) beam must be normal (perpendicular) to the plane of the entrance slit. Failure to align the beam properly with the entrance slit will adversely affect throughput, resolution, and wavelength accuracy. See the Tungsten Source Module for a pre-aligned visible source.


Resolution is a quantifiable indicator of the spectral purity of radiation exiting the monochromator. It is a function of the focal length of the monochromator, the dispersion of the grating and the width of the interchangeable entrance and exit slits.
Resolution is inversely proportional to slit width, i.e. as slit width decreases, resolution increases.

Resolution (nm) for Slit Widths of:


Linear Dispersion Wavelength Range 50μ 100μ 150μ 300μ 600μ 1mm


2400/250nm Holographic 5.34nm/mm 190-650nm 0.3 0.5 0.8 1.6 3.2 5.3
02 1800/250nm Holographic 7.27nm/mm 200-800nm 0.4 0.7 1.1 2.2 4.4 7.3
03 1800/500nm Holographic 7.16nm/mm 300-800nm 0.4 0.7 1.1 2.2 4.4 7.3
04 1200/750nm Ruled 10.66nm/mm 500nm-1.2μ 0.5 1.1 1.6 3.2 6.4 10.7
04V 1200/500nm Holographic 10.66nm/mm 420nm-1.15μ 0.5 1.1 1.6 3.2 6.4 10.7
05 830/1.2μ Ruled 15.42nm/mm 750nm-1.7μ 0.8 1.5 2.3 4.6 9.3 15.4
05G 830/1.2μ Ruled 15.42nm/mm 750nm-1.7μ 0.8 1.5 2.3 4.6 9.3 15.4
06 600/1.6μ Ruled 21.73nm/mm 850nm-2.2μ 1.1 2.2 3.3 6.5 13.0 21.7
06G 600/1.6μ Ruled 21.73nm/mm 85.nm-2.2μ 1.1 2.2 3.3 6.5 13.0 21.7
07 1200/400nm Ruled 11.15nm/mm 360-800nm 0.6 1.1 1.7 3.3 6.7 11.2
08 900/500nm Ruled 15.00nm/mm 360-800nm 0.8 1.5 2.3 4.5 9.0 15.0

Interchangeable Slits

Monochromator Resolution vs WavelengthA 300 micron pair of slits are included with each Mini-Chrom.  Additional slit sets can be purchased to optimize resolution or throughput.  Slits are available in 50, 100, 150, 300, 600 and 1000 micron widths, all 4mm in height.

Changing the slit assemblies in any Mini-Chrom takes only a few seconds and no tools. The slit assembly consists of a precision slit photo etched in a black oxide coated brass disc, a slit spacer, slit cover and two banana plugs. The banana plugs allow the assembly to be easily inserted or removed while assuring alignment of the slit with the monochromator. Note: Slits should always be changed in pairs.

Optical Coatings

Reflectance vs Wavelength of Aluminum and gold coated opticsAll optical surfaces in the standard Mini-Chroms are coated with aluminum which has a high reflectance throughout the UV-VISNIR spectral range. Aluminum does, however, exhibit a decrease in reflectance at approximately 850 nm. If your application requires optimal efficiency above 625 nm, and does not require efficiency below 600 nm, an optional gold coating on all optical surfaces is available.


PCM-02 Stepping Motor Controller

PCM-02 Stepping Motor Controller

The PCM-02 is ideally suited for driving our line of Scanning Digital Monochromators. Using a computer, the operator can move the monochromator to a specific wavelength and scan over a wavelength range. The PCM-02 application program can be used with Windows® operating systems.

When a terminal is used to drive the monochromator, the user can access a full library of commands that control a variety of operations of the grating drive (e.g. including the distance to be moved, the initial and final velocities of the move, the acceleration, the time period for pauses, etc.). Commands can be sent at any time, even when the motor is operating. The motor controller board includes over 2,000 bytes of non-volatile memory to store complex motion control programs.

Tungsten Source Module

Tungsten Halogen Source Module & Baseplate

The Tungsten Source Module includes a 20W tungsten halogen lamp in a quartz envelope, a lamp housing, shutter assembly and variable aperture assembly on a base plate and a regulated 12V DC power supply. Halogen compounds in the lamp recycle tungsten deposited on the inside of the envelope back to the filament. This cycling of tungsten prevents the gradual degradation of the lamp output, particularly in the ultraviolet and increases the life of the lamp. The module can be used as a visible and near infrared source (340 nm to 3 μ) or as a building block to construct a variety of spectrophotometric systems. The module has provisions for attaching a Mini-Chrom monochromator in a pinned location for easy alignment. The addition of a Mini-Chrom converts the Tungsten Halogen Source Module to a compact and versatile monochromatic light source. A quartz lens in the lamp housing focuses radiation from the tungsten lamp onto the entrance slit of the Mini-Chrom, obviating the need for additional optics and time consuming Alignment.

Fiber Optic Cable

We offer custom made fiber optic cables that use a slit on one end to range from 50 microns to 1 mm wide x 4 mm tall on one end and either a 4.8 mm ferrule or SMA-905 connector on the other end. They are the ideal output cables for our Mini-Chrom monochromators as well as our TLS series light sources. They have a length of 5 feet and are made with glass fibers which transmit all of the wavelengths from the TLS monochromators. Custom lengths in both glass fiber as well as quartz fiber, for UV applications, are available.

fiber optic cable with ferrule

fiber optic cable with SMA connector

View the Optometrics Corporate Capabilities Brochure

Save & Share Cart
Your Shopping Cart will be saved and you'll be given a link. You, or anyone with the link, can use it to retrieve your Cart at any time.
Back Save & Share Cart
Your Shopping Cart will be saved with Product pictures and information, and Cart Totals. Then send it to yourself, or a friend, with a link to retrieve it at any time.
Your cart email sent successfully :)