Questions about Chalcogenides

Chalcogenides are glasses containing one or more chalcogens (sulfur, selenium and tellurium). Chalcogenide glasses are becoming a preferred optical material for IR optics over Germanium (Ge), offering advantages that legacy materials simply cannot match.

Coating Chalcogenides with Confidence

While the chalcogenides family of glasses is typically more difficult to process than crystalline IR materials, the range of benefits (listed below) often outweigh process issues in optical applications.

  • Low weight
  • Relatively low overall cost
  • Higher transmission across the entire IR spectrum
  • Variable fabrication approaches
  • High refractive index

Chalcogenides are considered ideal in applications where weight and athermalized substrate materials are factors driving success. Designers are able to achieve more favorable athermal performance, while still maintaining a high degree of flexibility in terms of fabrication techniques. The relatively low change in refractive index to temperatures and an operating temperature range of -40 C to +60 C allows engineers to leverage chalcogenides for a broad spectrum of applications including moldable infrared optics like lenses, optical fibers, lasers, planar optics and integrated circuits among others.

Coating Chalcogenides with Confidence

Chalcogenides, while offering exceptionally favorable optical properties present unique difficulties during the manufacturing and coating process. Featuring amorphous less-robust structures, chalcogenides are markedly different from other infrared materials resulting in low adhesion between the glass and thin-film layers. They are also softer and prone to scratches and other surface-level defects, making it vital to perfect the ability to add protective layers of coating. Creating an extremely durable low stress coating for high-performance infrared (IR) applications has posed a challenge for manufacturers for years. The ideal parameters for achieving a high-performance coating are narrow and can be notoriously difficult to achieve, particularly when you attempt to coat chalcogenides with Diamond-Like Carbon (DLC) for specific applications.

Coating Chalcogenides with Confidence

DLC is notoriously difficult to utilize as a material for coating chalcogenides due to its tendency towards tiny defects called pinholes and the challenges with achieving uniform coating thickness. Poor coating adhesion and high compressive stress plague DLC applications on chalcogenides, which can lead to failures between the base material and the coating. Uncontrolled coating stress often results in “crazing” resulting in short and long-term failures.

Coating Chalcogenides with Confidence

The process of coating chalcogenides with DLC is what many might call a temperamental process — too few layers and you fail to meet the required durability levels, while too many layers can lead to undue stress and premature rupture. Finding the ideal balance has been a challenge but, here at Dynasil, we have developed a proprietary technique that produces dependable, long-lasting DLC coatings on chalcogenides at scale with virtually zero pinholes.

Coating Chalcogenides with Confidence

5
Save & Share Cart
Stash it away! We'll save and create a unique link to your cart. You (or anyone with the link) will be able to use the link to retrieve the cart. Pretty cool but shop responsibly!
Back Save & Share Cart
We're ready! Are you? Remember, anyone who has the unique link to your cart will be able to retrieve it. So, share responsibly.
Your cart email sent successfully :)